If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8=4+24t-16t^2
We move all terms to the left:
8-(4+24t-16t^2)=0
We get rid of parentheses
16t^2-24t-4+8=0
We add all the numbers together, and all the variables
16t^2-24t+4=0
a = 16; b = -24; c = +4;
Δ = b2-4ac
Δ = -242-4·16·4
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{5}}{2*16}=\frac{24-8\sqrt{5}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{5}}{2*16}=\frac{24+8\sqrt{5}}{32} $
| 7b=4b+120 | | 12=4+30t-16t^2 | | 15.8=4.3-2.1(n-4) | | 60-7x=5x | | 2.50x=163 | | X+x3=32 | | -x/5+x/4=-4 | | (2x+3)(2x)=560 | | 5/8-3/4t=7/8 | | 4u^2+21u-18=0 | | 2.50x=136 | | -1x-4=9 | | 4u^2=21u-18 | | 2Y-18x=16 | | 30r-48=7r-25 | | 7/6x-1/6•24=7/6x- | | |x/6-8|=|-3| | | -2h=4−2h | | 6+m=1-4m | | 5/x-2=-2/x+1+29/(x-2)(x=1) | | x^2(x+1)-9(x+1)=0 | | -10v−1=-10v | | 9+8j=8j+9 | | 2(5x-3)-3(2x+1)=9 | | 18x-4.8=6 | | 1+6n=9n+7 | | 5-2u=17 | | -6u−4=-7u | | x2+6x=56 | | 10m=-7+9m | | 10q+9=10q−8 | | x+11+2x-4+2x+7+2x+13+2x-17+3x-6+3x-9+6x=360 |